Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block16 [2025/11/23 12:21] mexleadminelectrical_engineering_and_electronics_1:block16 [2026/01/10 12:46] (aktuell) mexleadmin
Zeile 1: Zeile 1:
 ====== Block 16 - Ampère's Law and Magnetomotive Force (MMF) ====== ====== Block 16 - Ampère's Law and Magnetomotive Force (MMF) ======
  
-===== Learning objectives =====+===== 16.0 Intro ===== 
 + 
 +==== 16.0.1 Learning objectives ====
 <callout> <callout>
 After this 90-minute block, you can After this 90-minute block, you can
Zeile 7: Zeile 9:
 </callout> </callout>
  
-====Preparation at Home =====+==== 16.0.2 Preparation at Home ====
  
 Well, again  Well, again 
Zeile 16: Zeile 18:
   * ...   * ...
  
-====90-minute plan =====+==== 16.0.3 90-minute plan ====
   - Warm-up (x min):    - Warm-up (x min): 
     - ....      - .... 
Zeile 24: Zeile 26:
   - Wrap-up (x min): Summary box; common pitfalls checklist.   - Wrap-up (x min): Summary box; common pitfalls checklist.
  
-====Conceptual overview =====+==== 16.0.4  Conceptual overview ====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   - ...   - ...
 </callout> </callout>
  
-===== Core content =====+===== 16.1 Core content =====
  
-====Generalization of the Magnetic Field Strength =====+==== 16.1.1 Generalization of the Magnetic Field Strength ====
  
 So far, only the rotational symmetric problem of a single wire was considered in formula. I.e a current $I$ and the length $s$ of a magnetic field line around the wire was given to calculate the magnetic field strength $H$: So far, only the rotational symmetric problem of a single wire was considered in formula. I.e a current $I$ and the length $s$ of a magnetic field line around the wire was given to calculate the magnetic field strength $H$:
Zeile 104: Zeile 106:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Recap of the fieldline images ====+==== 16.1.2  Recap of the fieldline images ====
  
 <WRAP group><WRAP half column> <WRAP group><WRAP half column>
Zeile 114: Zeile 116:
  
 A longitudinal coil can be seen in <imgref BildNr04>. \\  A longitudinal coil can be seen in <imgref BildNr04>. \\ 
 +
 +The created field density of the coil can be derived from Ampere's Circuital Law
 +
 +\begin{align*} 
 +\theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ 
 +          &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\ 
 +          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}             & + &   0 \\ 
 +          &     & {H}(t) \cdot l \\ 
 +\end{align*}
 +
 The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\ The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\
 With a given number $N$ of windings, the magnetic field strength $H$ is With a given number $N$ of windings, the magnetic field strength $H$ is
Zeile 148: Zeile 160:
  
  
-===== Common pitfalls =====+===== 16.2 Common pitfalls =====
   * ...   * ...
  
-===== Exercises =====+===== 16.3 Exercises =====
  
 <panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>