Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block19 [2025/12/02 17:12] mexleadminelectrical_engineering_and_electronics_1:block19 [2025/12/02 19:42] (aktuell) mexleadmin
Zeile 42: Zeile 42:
  
 In this chapter, we will investigate how far we have come with such an analogy and where it can be practically applied. In this chapter, we will investigate how far we have come with such an analogy and where it can be practically applied.
- 
-==== Flux ==== 
- 
-The magnetic flux is a measurement of the amount of magnetic field lines through a given surface area, as seen in <imgref ImgNr03>. The magnetic flux is the amount of magnetic field lines cutting through a surface area defined by the surface vector $\vec{A}$. If the angle between the $\vec{A} = A\cdot \vec{n}$ and magnetic field vector $\vec{B}$ is parallel or antiparallel, as shown in the diagram, the absolute value of the magnetic flux is the highest possible value given the values of the area and the magnetic field. 
- 
-<WRAP> <imgcaption ImgNr03 | The magnetic flux is the amount of magnetic field lines cutting through a surface area A.> </imgcaption> {{drawio>MagneticFieldAndFlux.svg}} </WRAP> 
- 
-This definition leads to a magnetic flux similar to the electric flux studied earlier: 
- 
-\begin{align*}  
-\Phi_{\rm m} = \iint_A \vec{B} \cdot {\rm d} \vec{A}  
-\end{align*} 
- 
- 
-<imgref ImgNr05> depicts a circuit and an arbitrary surface $S$ that it bounds. Notice that $S$ is an open surface: The planar area bounded by the circuit is not part of the surface, so it is not fully enclosing a volume. 
- 
-Since the magnetic field is a source-free vortex field, the flux over a closed area is always zero:  
- 
-\begin{align*}  
-\Phi_{\rm m} = {\rlap{\Large \rlap{\int} \int} \; \Huge\circ}_{\!\!\! A} \vec{B} \cdot {\rm d} \vec{A} = 0 
-\end{align*} 
- 
-By this, it can be shown that any open surface bounded by the circuit in question can be used to evaluate $\Phi_{\rm m}$.  
-For example, $\Phi_{\rm m}$ is the same for the various surfaces $S$, $S_1$, $S_2$ of the figure. 
- 
-<WRAP> <imgcaption ImgNr05 | A circuit bounding an arbitrary open surface S. > </imgcaption> {{drawio>FluxThroughSurfaces.svg}} </WRAP> 
- 
-The SI unit for magnetic flux is the $\rm Weber$ (Wb), \begin{align*} [\Phi_{\rm m}] = [B] \cdot [A] = 1 ~\rm  T \cdot m^2 = 1 ~ Wb \end{align*} 
- 
-If the $B$ field is homogenous and $B$ is perpendicular to the surface $S$, then the fomula simplifies to: 
- 
-\begin{align*}  
-\Phi_{\rm m} = B \cdot A  
-\end{align*} 
- 
- 
-Based on this definition, the magnetic field unit is occasionally expressed as Weber per square meter ($\rm Wb/m^2$) instead of teslas.  
-In many practical applications, the circuit of interest consists of a number $N$ of tightly wound turns (similar to <imgref ImgNr06>).  
-Each turn experiences the same magnetic flux $\Phi_{\rm m}$.  
-Therefore, the net magnetic flux through the circuits is $N$ times the flux through one turn, and Faraday’s law is written as 
- 
- 
-==== Linked Flux ==== 
- 
-When looking at the magnetic field in a coil multiple windings capture the passing flux, see <imgref ImgNr14> (a).  
-It can also be interpreted in such a way that the flux is going through the closed surface of the circuit multiple times (in picture (b)). 
- 
-<WRAP> <imgcaption ImgNr14 | Example for a linked Flux> </imgcaption> {{drawio>LinkedFlux.svg}} </WRAP> 
- 
-The **linked flux** $\Psi$ is defined as the resulting flux given by the sum of the partial fluxes of the closed circuit. 
- 
-\begin{align*}  
-\boxed{ \Psi = \sum_{i=1}^n \Phi_{i} }  
-\end{align*} 
- 
-For the case of a coil with $N$ windings, this leads to: 
- 
-\begin{align*}  
-\boxed{ \Psi = N \cdot \Phi }  
-\end{align*} 
- 
- 
-<callout icon="fa fa-exclamation" color="red" title="Notice:"> 
- 
-When calculating the force, use the flux within the material ($\Phi$). \\ 
-When investigating effects in the coil, use the linked flux ($\Psi$). \\ 
- 
-</callout> 
  
 ==== Basics for Linear Magnetic Circuits ==== ==== Basics for Linear Magnetic Circuits ====
Zeile 298: Zeile 230:
 {{page>electrical_engineering_and_electronics:task_0j7accfimmemytq9_with_calculation&nofooter}} {{page>electrical_engineering_and_electronics:task_0j7accfimmemytq9_with_calculation&nofooter}}
  
 +<panel type="info" title="Exercise 5.1.1 Coil on a plastic Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A coil is set up onto a toroidal plastic ring ($\mu_{\rm r}=1$) with an average circumference of $l_R = 300 ~\rm mm$. 
 +The $N=400$ windings are evenly distributed along the circumference. 
 +The diameter on the cross-section of the plastic ring is $d = 10 ~\rm mm$. In the windings, a current of $I=500 ~\rm mA$ is flowing.
 +
 +Calculate
 +
 +  - the magnetic field strength $H$ in the middle of the ring cross-section.
 +  - the magnetic flux density $B$ in the middle of the ring cross-section.
 +  - the magnetic resistance $R_{\rm m}$ of the plastic ring.
 +  - the magnetic flux $\Phi$.
 +
 +<button size="xs" type="link" collapse="Solution_5_1_1_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_1_1_Result" collapsed="true">
 +
 +  - $H = 667 ~\rm {{A}\over{m}}$
 +  - $B = 0.84 ~\rm mT$
 +  - $R_m = 3 \cdot 10^9 ~\rm {{1}\over{H}}$
 +  - $\Phi = 66 ~\rm nVs$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.2 magnetic Resistance of a cylindrical coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic resistances of cylindrical coreless (=ironless) coils with the following dimensions:
 +
 +  - $l=35.8~\rm cm$, $d=1.90~\rm cm$
 +  - $l=11.1~\rm cm$, $d=1.50~\rm cm$
 +
 +#@HiddenBegin_HTML~5_1_2s,Solution~@#
 +
 +The magnetic resistance is given by:
 +\begin{align*}
 +\ R_{\rm m} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} 
 +\end{align*}
 +
 +With
 +  * the area $ A = \left({{d}\over{2}}\right)^2 \cdot \pi $
 +  * the vacuum magnetic permeability $\mu_{0}=4\pi\cdot 10^{-7} ~\rm H/m$, and 
 +  * the relative permeability $\mu_{\rm r}=1$.
 +
 +#@HiddenEnd_HTML~5_1_2s,Solution ~@#
 +
 +#@HiddenBegin_HTML~5_1_2r,Result~@#
 +  - $1.00\cdot 10^9 ~\rm {{1}\over{H}}$
 +  - $0.50\cdot 10^9 ~\rm {{1}\over{H}}$
 +#@HiddenEnd_HTML~5_1_2r,Result~@#
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.3 magnetic Resistance of an airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic resistances of an airgap with the following dimensions:
 +
 +  - $\delta=0.5~\rm mm$, $A=10.2~\rm cm^2$
 +  - $\delta=3.0~\rm mm$, $A=11.9~\rm cm^2$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_3_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_3_1_Result" collapsed="true">
 +
 +  - $3.9\cdot 10^5 ~\rm {{1}\over{H}}$
 +  - $2.0\cdot 10^6 ~\rm {{1}\over{H}}$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.4 Magnetic Voltage"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic voltage necessary to create a flux of $\Phi=0.5 ~\rm mVs$ in an airgap with the following dimensions:
 +
 +  - $\delta=1.7~\rm mm$, $A=4.5~\rm cm^2$
 +  - $\delta=5.0~\rm mm$, $A=7.1~\rm cm^2$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_4_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_4_1_Result" collapsed="true">
 +
 +  - $\theta = 1.5\cdot 10^3 ~\rm A$, or $1000$ windings with $1.5~\rm A$
 +  - $\theta = 2.8\cdot 10^3 ~\rm A$, or $1000$ windings with $2.8~\rm A$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.5 Magnetic Flux"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic flux created on a magnetic resistance of $R_m = 2.5 \cdot 10^6 ~\rm {{1}\over{H}}$ with the following magnetic voltages:
 +
 +  - $\theta = 35   ~\rm A$
 +  - $\theta = 950  ~\rm A$
 +  - $\theta = 2750 ~\rm A$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_5_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_5_1_Result" collapsed="true">
 +
 +  - $\Phi =14  ~\rm µVs$
 +  - $\Phi =0.38~\rm mVs$
 +  - $\Phi =1.1 ~\rm mVs$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.6 Two-parted ferrite Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A core shall consist of two parts, as seen in <imgref ImgExNr08>
 +In the coil, with $600$ windings shall pass the current $I=1.30 ~\rm A$.
 +
 +The cross sections are $A_1=530 ~\rm mm^2$ and $A_2=460 ~\rm mm^2$. 
 +The mean magnetic path lengths are $l_1 = 200 ~\rm mm$ and $l_2 = 130 ~\rm mm$.
 +
 +The air gaps on the coupling joint between both parts have the length $\delta = 0.23 ~\rm mm$ each. 
 +The permeability of the ferrite is $\mu_r = 3000$. 
 +The cross-section area $A_{\delta}$ of the airgap can be considered the same as $A_2$
 +
 +<WRAP> <imgcaption ImgExNr08 | Two-parted ferrite Core> </imgcaption> {{drawio>TwoPartedCoil.svg}} </WRAP>
 +
 +  - Draw the lumped circuit of the magnetic system
 +  - Calculate all magnetic resistances $R_{\rm m,i}$
 +  - Calculate the flux in the circuit
 +
 +<button size="xs" type="link" collapse="Solution_5_1_6_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_6_1_Result" collapsed="true">
 +
 +  - -
 +  - magnetic resistances: $R_{\rm m,1} = 100 \cdot 10^3 ~\rm {{1}\over{H}}$, $R_{\rm m,1} = 75 \cdot 10^3 ~\rm {{1}\over{H}}$, $R_{{\rm m},\delta} = 400 \cdot 10^3 ~\rm {{1}\over{H}}$
 +  - magnetic flux: $\Phi = 0.80 ~\rm mVs$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.7 Comparison with simplified Calculation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +The magnetic circuit in <imgref ImgExNr09> passes a magnetic flux density of $0.4 ~\rm T$ given by an excitation current of $0.50 ~\rm A$ in $400$ windings. 
 +At position $\rm A-B$, an air gap will be inserted. After this, the same flux density will be reached with $3.70 ~\rm A$
 +
 +<WRAP> <imgcaption ImgExNr09 | Example of a magnetic circuit> </imgcaption> {{drawio>ExMagncirc01.svg}} </WRAP>
 +
 +  - Calculate the length of the airgap $\delta$ with the simplification $\mu_{\rm r} \gg 1$
 +  - Calculate the length of the airgap $\delta$ exactly with $\mu_{\rm r} = 1000$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_7_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_7_1_Result" collapsed="true">
 +
 +  - $\delta = 4.02(12) ~\rm mm$
 +  - $\delta = 4.02(52) ~\rm mm$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.8 Coil on a ferrite Core with airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +The choke coil shown in <imgref ImgExNr10> shall be given, with a constant cross-section in all legs $l_0$, $l_1$, $l_2$. 
 +The number of windings shall be $N$ and the current through a single winding $I$.
 +
 +<WRAP> <imgcaption ImgExNr10 | Example for a Choke Coil> </imgcaption> {{drawio>ChokeCoilEx1.svg}} </WRAP>
 +
 +  - Draw the lumped circuit of the magnetic system
 +  - Calculate all magnetic resistances $R_{{\rm m},i}$
 +  - Calculate the partial fluxes in all the legs of the circuit
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.3.3 toroidal Core with two Coils"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A toroidal core (ferrite, $\mu_{\rm r} = 900$) has a cross-sectional area of $A = 500 ~\rm mm^2$ and an average circumference of $l=280 ~\rm mm$. 
 +At the core, there are two coils $N_1=500$ and $N_2=250$ wound. The currents on the coils are $I_1 = 250 ~\rm mA$ and $I_2=300 ~\rm mA$.
 +
 +  - The coils shall pass the currents with positive polarity (see the image **A** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm A}$ in the coil?
 +  - The coils shall pass the currents with negative polarity (see the image **B** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm B}$ in the coil?
 +
 +<WRAP> <imgcaption ImgEx14 | toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg.svg}} </WRAP>
 +
 +#@HiddenBegin_HTML~5_3_2s,Solution~@#
 +
 +The resulting flux can be derived from a superposition of the individual fluxes $\Phi_1(I_1)$ and $\Phi_2(I_2)$, or alternatively by summing the magnetic voltages in the loop ($\sum_x \theta_x = 0$).
 +
 +**Step 1 - Draw an equivalent magnetic circuit**
 +
 +Since there are no branches, all of the core can be lumped into a single magnetic resistance (see <imgref ImgEx14circ>).
 +<WRAP> <imgcaption ImgEx14circ | equivalent magnetic circuit> </imgcaption> {{drawio>torCoilPosNegCirc.svg}} </WRAP>
 +
 +**Step 2 - Get the absolute values of the individual fluxes**
 +
 +Hopkinson's Law can be used here as a starting point. \\
 +It connects the magnetic flux $\Phi$ and the magnetic voltage $\theta$ on the single magnetic resistor $R_\rm m$. \\
 +It also connects the single magnetic fluxes $\Phi_x$ (with $x = {1,2}$) and the single magnetic voltages $\theta_x$. \\
 +
 +\begin{align*} 
 +\theta_x             &= R_{\rm m}                                  \cdot \Phi_x \\
 +N_x \cdot I_x        &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} \cdot \Phi_x \\
 +\rightarrow \Phi_x   &= \mu_0 \mu_{\rm r} {{A}\over{l}} \cdot N_x \cdot I_x 
 +                      = {{1}\over{R_{\rm m} }}          \cdot N_x \cdot I_x \\
 +\end{align*}
 +
 +With the given values we get: $R_{\rm m} = 495 {\rm {kA}\over{Vs}}$
 +
 +**Step 3 - Get the signs/directions of the fluxes**
 +
 +The <imgref5_3_2_Solution> shows how to get the correct direction for every single flux by use of the right-hand rule. \\
 +The fluxes have to be added regarding these directions and the given direction of the flux in question.
 +<WRAP> <imgcaption 5_3_2_Solution| toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg_solution.svg}} </WRAP>
 +
 +Therefore, the formulas are
 +\begin{align*} 
 +\Phi_{\rm A}   &= \Phi_{1} - \Phi_{2} \\
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  -  N_2 \cdot I_2 \right) \\
 +               & = 0.25 ~{\rm mVs} - 0.15 ~{\rm mVs} \\
 +\Phi_{\rm B}   &= \Phi_{1} + \Phi_{2} \\
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  +  N_2 \cdot I_2 \right) \\
 +               & = 0.25 ~{\rm mVs} + 0.15 ~{\rm mVs} 
 +\end{align*}
 +
 +#@HiddenEnd_HTML~5_3_2s,Solution~@#
 +
 +
 +#@HiddenBegin_HTML~5_3_2r,Result~@#
 +  - $0.10 ~\rm mVs$
 +  - $0.40 ~\rm mVs$
 +#@HiddenEnd_HTML~5_3_2r,Result~@#
 +
 +</WRAP></WRAP></panel>
  
 ===== Embedded resources ===== ===== Embedded resources =====