Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block20 [2025/12/02 17:12] – angelegt mexleadmin | electrical_engineering_and_electronics_1:block20 [2025/12/02 18:50] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 31: | Zeile 31: | ||
| ===== Core content ===== | ===== Core content ===== | ||
| - | ... | + | ==== Self-Induction ==== |
| + | |||
| + | Up to now, we investigated the induction of electric voltages and currents based on the change of an external flux ${\rm d}\Psi / {\rm d}t$. | ||
| + | For the induced current $i_{\rm ind}$, we found that it counteracts the change of the external flux (Lenz law). | ||
| + | |||
| + | But what happens, when there is no external field - only a coil which creates the flux change itself (see <imgref ImgNr46> | ||
| + | |||
| + | < | ||
| + | |||
| + | To understand this, we will investigate the situation for a long coil (<imgref ImgNr15> | ||
| + | |||
| + | < | ||
| + | |||
| + | The created field density of the coil can be derived from Ampere' | ||
| + | |||
| + | \begin{align*} | ||
| + | \theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ | ||
| + | &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\ | ||
| + | &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | With magnetic voltage $\theta(t) = N \cdot i$ this lead to the magnetic flux density $B(t)$ | ||
| + | |||
| + | \begin{align*} | ||
| + | N \cdot i &= {H}(t) \cdot l \\ | ||
| + | | ||
| + | | ||
| + | \end{align*} | ||
| + | |||
| + | Based on the magnetic flux density $B(t)$ it is possible to calculate the flux $\Phi(t)$: | ||
| + | |||
| + | \begin{align*} | ||
| + | \Phi(t) &= \iint_A \vec{B}(t) | ||
| + | &= \iint_A \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot {\rm d}A \\ | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current. | ||
| + | This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by: | ||
| + | |||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= - N \cdot {{{\rm d} | ||
| + | &= - N \cdot {{{\rm d} (\mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A)}\over{{\rm d}t}} \\ | ||
| + | &= - N \cdot \mu_0 \mu_{\rm r} \cdot {{N \cdot A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | \begin{align*} | ||
| + | \boxed{ u_{\rm ind} = - \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\ } \\ | ||
| + | \text{for a long coil} | ||
| + | \end{align*} | ||
| + | |||
| + | The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$. | ||
| + | The proportionality factor is also called **Self-inductance** | ||
| + | |||
| + | ===== 4.5 Inductance ===== | ||
| + | |||
| + | The inductance is another passive basic component of the electric circuit. | ||
| + | Besides the ohmic resistor $R$ and the capacitor $C$, the inductor $L$ is the lump component entailing the inductance. | ||
| + | |||
| + | Generally, the inductance is defined by: | ||
| + | \begin{align*} | ||
| + | \boxed{ L = \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ } | ||
| + | \end{align*} | ||
| + | |||
| + | The inductance $L$ can also be described differently based on Lenz law $u_{\rm ind} = - {{\rm d}\over{{\rm d}t}}\Psi(t)$ : | ||
| + | |||
| + | \begin{align*} | ||
| + | L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | \begin{align*} \boxed{ L = {{ \Psi(t)}\over{i}} } \end{align*} | ||
| + | |||
| + | One can also consider an inductor a " | ||
| + | It reacts to any change in the current with a counteracting voltage since the current change leads to a changing flux and - therefore - an induced voltage. | ||
| + | The <imgref BildNr5> shows an inductor in series with a resistor and a switch (any real switch also behaves as a capacitor, when open). | ||
| + | Once the simulation is started, the inductor directly counteracts the current, which is why the current only slowly increases. | ||
| + | |||
| + | The unit of the inductance is $\rm 1 ~Henry = 1 ~H = 1 {{Vs}\over{A}} = 1{{Wb}\over{A}} $ | ||
| + | |||
| + | < | ||
| + | |||
| + | Mathematically the voltages can be described in the following way: | ||
| + | |||
| + | \begin{align*} | ||
| + | u_0 &= u_R &+ &u_L \\ | ||
| + | &= i \cdot R & + & | ||
| + | &= i \cdot R & + &L \cdot {{{\rm d}i}\over{{\rm d}t}} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | ==== Inductance of different Components ==== | ||
| + | |||
| + | === Long Coil === | ||
| + | |||
| + | In the last sub-chapter, | ||
| + | By these, the inductance of a long coil is | ||
| + | |||
| + | \begin{align*} | ||
| + | \boxed{L_{\rm long \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}}} | ||
| + | \end{align*} | ||
| + | |||
| + | === Toroidal Coil === | ||
| + | |||
| + | The toroidal coil was analyzed in the last chapter(see [[: | ||
| + | Here, a rectangular intersection a assumed (see <imgref ImgNr16> | ||
| + | |||
| + | < | ||
| + | |||
| + | This leads to | ||
| + | |||
| + | \begin{align*} H(t) = {{N \cdot i}\over {l}} \end{align*} | ||
| + | |||
| + | with the mean magnetic path length (= length of the average field line) $l = \pi(r_{\rm o} + r_{\rm i})$: | ||
| + | |||
| + | \begin{align*} H(t) = {{N \cdot i}\over { \pi(r_{\rm o} + r_{\rm i})}} \end{align*} | ||
| + | |||
| + | The inductance $L$ can be calculated by | ||
| + | |||
| + | \begin{align*} | ||
| + | L_{\rm toroidal \; coil} & | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | With the magnetic flux density $B(t) = \mu_0 \mu_{\rm r} H(t) = \mu_0 \mu_{\rm r} {{i \cdot N }\over {l}}$ and the cross section $A = h (r_{\rm o} - r_{\rm i})$, we get: | ||
| + | |||
| + | \begin{align*} | ||
| + | \quad \quad L_{\rm toroidal \; coil} &= {{ N \cdot \mu_0 \mu_{\rm r} {{i \cdot N } \over { \pi(r_{\rm o} + r_{\rm i})}} \cdot h(r_{\rm o} - r_{\rm i})}\over{i}} \\ | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | \begin{align*} | ||
| + | \boxed{ L_{\rm toroidal \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{ h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} } | ||
| + | \end{align*} | ||
| + | |||
| + | |||
| + | ==== 6 Inductances in Circuits ==== | ||
| + | |||
| + | Focus here: uncoupled inductors! | ||
| + | |||
| + | === Series Circuits === | ||
| + | |||
| + | Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff' | ||
| + | |||
| + | \begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*} | ||
| + | |||
| + | A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): | ||
| + | |||
| + | \begin{align*} | ||
| + | & u_{\rm eq} & = & | ||
| + | & L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\ | ||
| + | & L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i | ||
| + | & L_{\rm eq} & = & | ||
| + | \end{align*} | ||
| + | |||
| + | ===Parallel Circuits === | ||
| + | |||
| + | For parallel circuits, one can also start with the principles based on Kirchhoff' | ||
| + | |||
| + | \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} | ||
| + | |||
| + | and Kirchhoff' | ||
| + | |||
| + | \begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*} | ||
| + | |||
| + | Here, the formula for the induced voltage has to be rearranged: | ||
| + | |||
| + | \begin{align*} | ||
| + | | ||
| + | \int u_{\rm ind} {\rm d}t &= L \cdot i \\ | ||
| + | i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\ | ||
| + | \end{align*} | ||
| + | |||
| + | By this, we get: | ||
| + | |||
| + | \begin{align*} | ||
| + | i_{\rm eq} &=& i_1 & | ||
| + | {{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\ | ||
| + | {{1}\over{L_{\rm eq}}} \cdot \int u {\rm d}t &=& {{1}\over{L_1}} \cdot \int u {\rm d}t &+& {{1}\over{L_2}} \cdot \int u {\rm d}t &+& ... \\ | ||
| + | {{1}\over{L_{\rm eq}}} &=& {{1}\over{L_1}} | ||
| + | \end{align*} | ||
| + | |||
| + | <callout icon=" | ||
| + | |||
| + | |||
| ===== Common pitfalls ===== | ===== Common pitfalls ===== | ||
| Zeile 37: | Zeile 222: | ||
| ===== Exercises ===== | ===== Exercises ===== | ||
| + | |||
| {{page> | {{page> | ||
| {{page> | {{page> | ||
| - | {{page> | ||
| - | {{page> | ||
| + | <panel type=" | ||
| + | |||
| + | Calculate the inductance for the following settings | ||
| + | |||
| + | 1. Cylindrical long air coil with $N=390$, winding diameter $d=3.0 ~\rm cm$ and length $l=18 ~\rm cm$ | ||
| + | # | ||
| + | |||
| + | \begin{align*} | ||
| + | L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ | ||
| + | &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot (0.03~\rm m)^2 }\over {0.18 ~\rm m}} | ||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | L_1 &= 3.0 ~\rm mH | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | 2. Similar coil geometry as explained in 1. , but with double the number of windings | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | L_2 &= \mu_0 \mu_{\rm r} \cdot N_2^2 \cdot {{A }\over {l}} \\ | ||
| + | &= \mu_0 \mu_{\rm r} \cdot (2\cdot N)^2 \cdot {{A }\over {l}} \\ | ||
| + | &= \mu_0 \mu_{\rm r} \cdot 4\cdot N^2 \cdot {{A }\over {l}} \\ | ||
| + | &= 4\cdot L_1 \\ | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | L_1 &= 12 ~\rm mH | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | 3. Two coils as explained in 1. in series | ||
| + | |||
| + | # | ||
| + | multiple inductances in series just add up. One can think of adding more windings to the first coil in the formula.. | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | L_1 &= 6.0 ~\rm mH | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | 4. Similar coil geometry and number of windings as explained in 1. , but with an iron core ($\mu_{\rm r}=1000$) | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | L_4 &= \mu_0 \mu_{\rm r,4} \cdot N^2 \cdot {{A }\over {l}} \\ | ||
| + | &= \mu_0 \cdot 1000 \cdot N^2 \cdot {{A }\over {l}} \\ | ||
| + | &= 1000 \cdot L_4 \\ | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | L_4 &= 3.0 ~\rm H | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A cylindrical air coil (length $l=40 ~\rm cm$, diameter $d=5.0 ~\rm cm$, and a number of windings $N=300$) passes a current of $30 ~\rm A$. The current shall be reduced linearly in $2.0 ~\rm ms$ down to $0.0 ~\rm A$. | ||
| + | |||
| + | What is the amount of the induced voltage $u_{\rm ind}$? | ||
| + | |||
| + | # | ||
| + | |||
| + | The requested induced voltage can be derived by: | ||
| + | |||
| + | \begin{align*} | ||
| + | L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ | ||
| + | \rightarrow | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | Therefore, we just need the inductance $L$, since ${{\Delta i}\over{\Delta t}}$ is defined as $30 ~\rm A$ per $2 ~\rm ms$: | ||
| + | |||
| + | \begin{align*} | ||
| + | L &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | So, the result can be derived as: | ||
| + | \begin{align*} | ||
| + | \left|u_{\rm ind}\right| &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\ | ||
| + | & | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | \left|u_{\rm ind}\right| &= 33 ~\rm V\end{align*} | ||
| + | # | ||
| + | |||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A coil with the inductance $L=20 ~\rm µH$ passes a current of $40 ~\rm A$. The current shall be reduced linearly in $5 ~\rm µs$ down to $0 ~\rm A$ (see <imgref ImgNrEx05> | ||
| + | |||
| + | * What is the amount of the induced voltage $u_{\rm ind}$? | ||
| + | * Sketch the course of $u_{\rm ind}(t)$! | ||
| + | |||
| + | < | ||
| + | |||
| + | </ | ||
| ===== Embedded resources ===== | ===== Embedded resources ===== | ||