Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block20 [2025/12/02 18:44] mexleadminelectrical_engineering_and_electronics_1:block20 [2025/12/02 18:50] (aktuell) mexleadmin
Zeile 166: Zeile 166:
 \end{align*} \end{align*}
  
 +
 +==== 6 Inductances in Circuits ====
 +
 +Focus here: uncoupled inductors!
 +
 +=== Series Circuits ===
 +
 +Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff's mesh law ($i=\rm const$) the series circuit of inductions can be interpreted as a single current $i$ which generates multiple linked fluxes $\Psi$. Since the current must stay constant in the series circuit, the following applies for the equivalent inductor of a series connection of single ones:
 +
 +\begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*}
 +
 +A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$):
 +
 +\begin{align*} 
 +& u_{\rm eq}                                       & = &u_1                                    & + &u_2                        &+ ... \\ 
 +& L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\ 
 +& L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}}          & = &L_{1} {{{\rm d}i     }\over{{\rm d}t}} & + &L_{2} {{di     }\over{dt}} &+ ... \\ 
 +& L_{\rm eq}                                       & = &L_{1}                                  & + &L_{2}                      &+ ... \\ 
 +\end{align*}
 +
 +===Parallel Circuits ===
 +
 +For parallel circuits, one can also start with the principles based on Kirchhoff's mesh law:
 +
 +\begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*}
 +
 +and Kirchhoff's nodal law:
 +
 +\begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*}
 +
 +Here, the formula for the induced voltage has to be rearranged:
 +
 +\begin{align*} 
 +     u_{\rm ind}          &= L {{{\rm d}i}\over{{\rm d}t}} \quad \quad \quad \quad \bigg| \int(){\rm d}t \\ 
 +\int u_{\rm ind} {\rm d}t &= L \cdot i \\ 
 +                        i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\ 
 +\end{align*}
 +
 +By this, we get:
 +
 +\begin{align*} 
 +                                  i_{\rm eq}          &=& i_1                                       &+& i_2                                       &+& ... \\ 
 +{{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\ 
 +{{1}\over{L_{\rm eq}}} \cdot \int u          {\rm d}t &=& {{1}\over{L_1}} \cdot \int u     {\rm d}t &+& {{1}\over{L_2}} \cdot \int u     {\rm d}t &+& ... \\ 
 +{{1}\over{L_{\rm eq}}}                                &=& {{1}\over{L_1}}                           &+& {{1}\over{L_2}}                           &+& ... \\ 
 +\end{align*}
 +
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> The inductor behaves in the parallel and series circuit similar to the resistor. </callout>
  
  
Zeile 174: Zeile 222:
  
 ===== Exercises ===== ===== Exercises =====
 +
  
 {{page>electrical_engineering_and_electronics:task_ljxf80q7vxywehqf_with_calculation&nofooter}} {{page>electrical_engineering_and_electronics:task_ljxf80q7vxywehqf_with_calculation&nofooter}}