Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block20 [2025/12/02 18:44] – mexleadmin | electrical_engineering_and_electronics_1:block20 [2026/01/20 15:39] (aktuell) – [20.3 Exercises] mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | ====== Block 20 — Electromagnetic Induction | + | ====== Block 20 — Inductance |
| - | ===== Learning objectives | + | ===== 20.0 Intro ===== |
| + | |||
| + | ==== 20.0.1 | ||
| < | < | ||
| After this 90-minute block, you can | After this 90-minute block, you can | ||
| Zeile 7: | Zeile 9: | ||
| </ | </ | ||
| - | ===== Preparation at Home ===== | + | ==== 20.0.2 |
| Well, again | Well, again | ||
| Zeile 16: | Zeile 18: | ||
| * ... | * ... | ||
| - | ===== 90-minute plan ===== | + | ==== 20.0.3 |
| - Warm-up (x min): | - Warm-up (x min): | ||
| - .... | - .... | ||
| Zeile 24: | Zeile 26: | ||
| - Wrap-up (x min): Summary box; common pitfalls checklist. | - Wrap-up (x min): Summary box; common pitfalls checklist. | ||
| - | ===== Conceptual overview | + | ==== 20.0.4 |
| <callout icon=" | <callout icon=" | ||
| - ... | - ... | ||
| </ | </ | ||
| - | ===== Core content ===== | + | ===== 20.1 Core content ===== |
| - | ==== Self-Induction ==== | + | ==== 20.1.1 |
| Up to now, we investigated the induction of electric voltages and currents based on the change of an external flux ${\rm d}\Psi / {\rm d}t$. | Up to now, we investigated the induction of electric voltages and currents based on the change of an external flux ${\rm d}\Psi / {\rm d}t$. | ||
| Zeile 44: | Zeile 46: | ||
| < | < | ||
| - | The created field density | + | Given by the [[block16# |
| \begin{align*} | \begin{align*} | ||
| - | \theta(t) &= \int & \vec{H}(t) | + | {H}(t) & |
| - | | + | |
| - | &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} | + | |
| - | & | + | |
| \end{align*} | \end{align*} | ||
| - | With magnetic voltage $\theta(t) = N \cdot i$ this lead to the magnetic flux density $B(t)$ | + | This lead to the magnetic flux density $B(t)$ |
| \begin{align*} | \begin{align*} | ||
| - | N \cdot i &= {H}(t) \cdot l \\ | ||
| - | | ||
| | | ||
| \end{align*} | \end{align*} | ||
| Zeile 69: | Zeile 65: | ||
| \end{align*} | \end{align*} | ||
| - | The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current. | + | The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current. |
| This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by: | This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by: | ||
| Zeile 83: | Zeile 79: | ||
| \end{align*} | \end{align*} | ||
| - | The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$. | + | The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$. |
| The proportionality factor is also called **Self-inductance** | The proportionality factor is also called **Self-inductance** | ||
| - | ===== 4.5 Inductance | + | ==== 20.1.2 Inductance ==== |
| The inductance is another passive basic component of the electric circuit. | The inductance is another passive basic component of the electric circuit. | ||
| Zeile 122: | Zeile 118: | ||
| \end{align*} | \end{align*} | ||
| - | ==== Inductance of different Components ==== | + | ==== 20.1.3 |
| === Long Coil === | === Long Coil === | ||
| Zeile 167: | Zeile 163: | ||
| + | ==== 20.1.4 | ||
| + | Focus here: uncoupled inductors! | ||
| + | === Series Circuits === | ||
| - | ===== Common pitfalls ===== | + | Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff' |
| + | |||
| + | \begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} | ||
| + | |||
| + | A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): | ||
| + | |||
| + | \begin{align*} | ||
| + | & u_{\rm eq} & = & | ||
| + | & L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\ | ||
| + | & L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i | ||
| + | & L_{\rm eq} & = & | ||
| + | \end{align*} | ||
| + | |||
| + | ===Parallel Circuits === | ||
| + | |||
| + | For parallel circuits, one can also start with the principles based on Kirchhoff' | ||
| + | |||
| + | \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} | ||
| + | |||
| + | and Kirchhoff' | ||
| + | |||
| + | \begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*} | ||
| + | |||
| + | Here, the formula for the induced voltage has to be rearranged: | ||
| + | |||
| + | \begin{align*} | ||
| + | | ||
| + | \int u_{\rm ind} {\rm d}t &= L \cdot i \\ | ||
| + | i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\ | ||
| + | \end{align*} | ||
| + | |||
| + | By this, we get: | ||
| + | |||
| + | \begin{align*} | ||
| + | i_{\rm eq} &=& i_1 & | ||
| + | {{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\ | ||
| + | {{1}\over{L_{\rm eq}}} \cdot \int u {\rm d}t &=& {{1}\over{L_1}} \cdot \int u {\rm d}t &+& {{1}\over{L_2}} \cdot \int u {\rm d}t &+& ... \\ | ||
| + | {{1}\over{L_{\rm eq}}} &=& {{1}\over{L_1}} | ||
| + | \end{align*} | ||
| + | |||
| + | <callout icon=" | ||
| + | |||
| + | ==== 20.1.5 Energy of the magnetic Field ==== | ||
| + | |||
| + | not covered | ||
| + | ===== 20.2 Common pitfalls ===== | ||
| * ... | * ... | ||
| - | ===== Exercises ===== | + | ===== 20.3 Exercises ===== |
| {{page> | {{page> | ||
| Zeile 187: | Zeile 232: | ||
| \begin{align*} | \begin{align*} | ||
| L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ | L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ | ||
| - | &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot (0.03~\rm m)^2 }\over {0.18 ~\rm m}} | + | &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot ({{0.03~\rm m}\over{2}})^2 }\over {0.18 ~\rm m}} |
| \end{align*} | \end{align*} | ||
| Zeile 194: | Zeile 239: | ||
| # | # | ||
| \begin{align*} | \begin{align*} | ||
| - | L_1 & | + | L_1 &= 0.75 ~\rm mH |
| \end{align*} | \end{align*} | ||
| # | # | ||
| Zeile 211: | Zeile 256: | ||
| # | # | ||
| \begin{align*} | \begin{align*} | ||
| - | L_1 & | + | L_1 & |
| \end{align*} | \end{align*} | ||
| # | # | ||
| Zeile 224: | Zeile 269: | ||
| # | # | ||
| \begin{align*} | \begin{align*} | ||
| - | L_1 & | + | L_1 & |
| \end{align*} | \end{align*} | ||
| # | # | ||
| Zeile 240: | Zeile 285: | ||
| # | # | ||
| \begin{align*} | \begin{align*} | ||
| - | L_4 & | + | L_4 &= 0.75 ~\rm H |
| \end{align*} | \end{align*} | ||
| # | # | ||
| Zeile 248: | Zeile 293: | ||
| <panel type=" | <panel type=" | ||
| - | A cylindrical air coil (length $l=40 ~\rm cm$, diameter | + | A cylindrical air coil (length $l=40 ~\rm cm$, radius |
| What is the amount of the induced voltage $u_{\rm ind}$? | What is the amount of the induced voltage $u_{\rm ind}$? | ||