Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block20 [2025/12/02 18:45] – mexleadmin | electrical_engineering_and_electronics_1:block20 [2025/12/02 18:50] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 167: | Zeile 167: | ||
| + | ==== 6 Inductances in Circuits ==== | ||
| + | Focus here: uncoupled inductors! | ||
| + | === Series Circuits === | ||
| - | ===== Common pitfalls ===== | + | Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff' |
| - | * ... | + | |
| - | + | ||
| - | ===== Exercises ===== | + | |
| - | + | ||
| - | + | ||
| - | <panel type=" | + | |
| - | + | ||
| - | A change of magnetic flux is passing a coil with a single winding. The following pictures <imgref ImgNrEx01> | + | |
| - | + | ||
| - | * Create for each $\Phi(t)$-diagram the corresponding | + | |
| - | * Write down each maximum value of $u_{\rm ind}(t)$ | + | |
| - | < | + | \begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*} |
| - | <button size=" | + | A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): |
| - | For partwise linear $u_{\rm ind}$ one can derive: | ||
| \begin{align*} | \begin{align*} | ||
| - | u_{\rm | + | & u_{\rm |
| - | &= -{{\Delta \Phi}\over{\Delta t}} | + | & L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\ |
| + | & L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i }\over{{\rm d}t}} & + &L_{2} {{di | ||
| + | & L_{\rm eq} & = & | ||
| \end{align*} | \end{align*} | ||
| - | For diagram (a): | + | ===Parallel Circuits === |
| - | * $t= 0.0 ... 0.6 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | + | For parallel circuits, one can also start with the principles based on Kirchhoff' |
| - | * $t= 0.6 ... 1.5 ~\rm s$: $u_{\rm ind} = -{{-3.75\cdot 10^{-3} ~\rm Vs}\over{0.9 ~\rm s}}= +4.17 ~\rm mV$ | + | |
| - | * $t= 1.5 ... 2.1 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | + | |
| - | </ | + | \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} |
| - | <button size=" | + | and Kirchhoff' |
| - | {{icon> | + | |
| - | < | + | |
| - | </ | + | |
| - | </ | + | |
| - | </ | + | \begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*} |
| - | <panel type=" | + | Here, the formula for the induced voltage has to be rearranged: |
| - | A changing of magnetic flux is passing a coil with a single winding and induces the voltage $u_{\rm ind}(t)$. | ||
| - | The following pictures <imgref ImgNrEx02> | ||
| - | |||
| - | * Create for each $u_{\rm ind}(t)$-diagram the corresponding $\Phi(t)$-diagram! | ||
| - | * Write down each maximum value of $\Phi(t)$ | ||
| - | |||
| - | Note the given start value $\Phi_0$ for each flux. | ||
| - | |||
| - | < | ||
| - | |||
| - | # | ||
| - | |||
| - | For partwise linear $u_{\rm ind}$ one can derive: | ||
| \begin{align*} | \begin{align*} | ||
| - | u_{\rm ind} & | + | u_{\rm ind} & |
| - | \rightarrow | + | \int u_{\rm ind} {\rm d}t &= L \cdot i \\ |
| - | \Phi &= \Phi_0 -\sum_k | + | i & |
| \end{align*} | \end{align*} | ||
| - | For diagram (a): | + | By this, we get: |
| - | * $t= 0.00 ... 0.04 ~\rm s\quad$: $\quad \Phi = \Phi_0 - {0 \cdot \; \Delta t} \quad\quad\quad\quad\quad\quad\quad= 0 ~\rm Wb$ | ||
| - | * $t= 0.04 ... 0.10 ~\rm s\quad$: $\quad \Phi = 0 {~\rm Wb} - {{30 ~\rm mV} \cdot \; (t - 0.04 ~\rm s)} = \quad {1.2 ~\rm mWb} - t \cdot 30 ~\rm mV$ | ||
| - | * $t= 0.10 ... 0.14 ~\rm s\quad$: $\quad \Phi = {1.2 ~\rm mWb} - {0.10 ~\rm s} \cdot 30 ~\rm mV \quad = - {1.8 ~\rm mWb}$ | ||
| - | |||
| - | # | ||
| - | |||
| - | # | ||
| - | {{drawio> | ||
| - | # | ||
| - | |||
| - | |||
| - | </ | ||
| - | |||
| - | <panel type=" | ||
| - | |||
| - | A single winding is located in a homogenous magnetic field ($B = 0.5 ~\rm T$) between the pole pieces. | ||
| - | The winding has a length of $150 ~\rm mm$ and a distance between the conductors of $50 ~\rm mm$ (see <imgref ImgNrEx03> | ||
| - | |||
| - | * Determine the function $u_{\rm ind}(t)$, when the coil is rotating with $3000 ~\rm min^{-1}$. | ||
| - | * Given a current of $20 ~\rm A$ through the winding: What is the torque $M(\varphi)$ depending on the angle between the surface vector of the winding and the magnetic field? | ||
| - | |||
| - | < | ||
| - | |||
| - | <button size=" | ||
| \begin{align*} | \begin{align*} | ||
| - | u_{\rm ind} & | + | i_{\rm eq} &=& i_1 & |
| - | &= - {{\rm d}\over{{\rm d}t}} B \cdot A \\ | + | {{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\ |
| - | &= - B \cdot {{\rm d}\over{{\rm | + | {{1}\over{L_{\rm eq}}} \cdot \int u |
| - | &= - B \cdot {{\rm d}\over{{\rm d}t}} \left(l | + | {{1}\over{L_{\rm eq}}} &=& {{1}\over{L_1}} |
| - | | + | |
| \end{align*} | \end{align*} | ||
| - | </ | + | <callout icon=" |
| - | <panel type=" | ||
| - | A rectangular coil is given by the sizes $a=10 ~\rm cm$, $b=4 ~\rm cm$, and the number of windings $N=200$. | ||
| - | This coil moves with a constant speed of $v=2 ~\rm m/s$ perpendicular to a homogeneous magnetic field ($B=1.3 ~\rm T$ on a length of $l=5 ~\rm cm$). | ||
| - | The area of the coil is tilted with regard to the field in $\alpha=60°$ and enters the field from the left side (see <imgref ImgNrEx04> | ||
| - | * Determine the function $u_{\rm ind}(t)$ on the coil along the given path. Sketch of the $u_{\rm ind}(t)$ diagram. | ||
| - | * What is the maximum induced voltage $u_{\rm ind,Max}$? | ||
| - | < | + | ===== Common pitfalls |
| - | + | * ... | |
| - | <button size=" | + | |
| - | + | ||
| - | Let assume, that $l$ is in the $x$-axis, $\vec{B}$ in the $y$-axis and $a$. | + | |
| - | \\ \\ | + | |
| - | + | ||
| - | **Step 1**: Calculate the effective area, perpendicular to the $\vec{B}$-field (independent from whether the area is in the $\vec{B}$-field or not). | + | |
| - | + | ||
| - | For this $b$ has to be projected onto the plane perpendicular to the $\vec{B}$-field: | + | |
| - | \begin{align*} | + | |
| - | A_{\rm eff} &= a \cdot b \cdot \cos \alpha | + | |
| - | \end{align*} | + | |
| - | + | ||
| - | **Step 2**: Focus on entering and exiting the $\vec{B}$-field. \\ | + | |
| - | Induction only occurs for ${{\rm d}\over{{\rm d}t}}(A\cdot B)\neq 0$, so here: when the area $A_{\rm eff}$ enters and leave the constant $\vec{B}$-field. | + | |
| - | + | ||
| - | When entering the $\vec{B}$-field the area $A$ with $0< | + | |
| - | The area moves with $v$. Therefore, after $\Delta t = b_{\rm eff} \cdot v$ the full $\vec{B}$-field is provided onto the area $A_{\rm eff}$: | + | |
| - | \begin{align*} | + | |
| - | u_{\rm ind} &= - {{{\rm d}\Psi}\over{{\rm d}t}} \\ | + | |
| - | &= -N \cdot {{\rm d}\over{{\rm d}t}} B \cdot A \\ | + | |
| - | &= -N \cdot | + | |
| - | &= -N \cdot {{1}\over{b \cdot \cos \alpha \cdot v}} B \cdot a \cdot b \cdot \cos \alpha \\ | + | |
| - | &= -N \cdot B \cdot {{a}\over{v}}\\ | + | |
| - | \end{align*} | + | |
| - | + | ||
| - | The following diagram shows ... | + | |
| - | * ... how one can derive the effective width $b_{\rm eff}$, which is projected onto the plane perpendicular to the $\vec{B}$-field: | + | |
| - | * ... what happens on the effective area $A_{\rm eff}$: there is a change of the field lines in the area only for entering and leaving the $\vec{B}$-field. | + | |
| - | * ... how the $u_{\rm ind}(t)$ looks as a graph: the part of $A_{\rm eff}$, where the $\vec{B}$-field passes through increase linearly due to the constant speed $v$ | + | |
| - | Be aware, that the task did not provide a clue for the direction of windings and therefore it provides no clue for the polarization of the induced voltage. \\ | + | |
| - | So, the course of the voltage when entering or exiting is not uniquely given. | + | |
| - | + | ||
| - | < | + | |
| + | ===== Exercises ===== | ||
| - | </ | ||
| {{page> | {{page> | ||