Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block22 [2025/12/14 23:26] mexleadminelectrical_engineering_and_electronics_1:block22 [2026/01/10 10:01] (aktuell) mexleadmin
Zeile 1: Zeile 1:
 ====== Block 22 — Negative-feedback Op-Amp Circuits ====== ====== Block 22 — Negative-feedback Op-Amp Circuits ======
  
-===== Learning objectives =====+===== 22.0 Intro ===== 
 + 
 +==== 22.0.1 Learning objectives ====
 <callout> <callout>
 After this 90-minute block, you can After this 90-minute block, you can
Zeile 18: Zeile 20:
 </callout> </callout>
  
-====Preparation at Home =====+==== 22.0.2 Preparation at Home ====
  
 Well, again  Well, again 
Zeile 27: Zeile 29:
   * ...   * ...
  
-====90-minute plan =====+==== 22.0.3 90-minute plan ====
   - Warm-up (10 min):   - Warm-up (10 min):
     - Quick recall: ideal op-amp model and “golden rules” in negative feedback: \\ $I_{\rm p}\approx 0$, $I_{\rm m}\approx 0$, and (with feedback) $U_{\rm D}=U_{\rm p}-U_{\rm m}\rightarrow 0$.     - Quick recall: ideal op-amp model and “golden rules” in negative feedback: \\ $I_{\rm p}\approx 0$, $I_{\rm m}\approx 0$, and (with feedback) $U_{\rm D}=U_{\rm p}-U_{\rm m}\rightarrow 0$.
Zeile 68: Zeile 70:
     - Outlook: differential amplifier as subtraction / common-mode rejection; application circuits (PGA, instrumentation concepts).     - Outlook: differential amplifier as subtraction / common-mode rejection; application circuits (PGA, instrumentation concepts).
  
- +==== 22.0.4  Conceptual overview ====
-===== Conceptual overview =====+
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   * Negative feedback turns a very large (and imperfect) op-amp gain $A_{\rm D}$ into predictable closed-loop behavior: the circuit “chooses” $U_{\rm O}$ so that the differential input voltage $U_{\rm D}=U_{\rm p}-U_{\rm m}$ becomes (almost) zero.   * Negative feedback turns a very large (and imperfect) op-amp gain $A_{\rm D}$ into predictable closed-loop behavior: the circuit “chooses” $U_{\rm O}$ so that the differential input voltage $U_{\rm D}=U_{\rm p}-U_{\rm m}$ becomes (almost) zero.
Zeile 87: Zeile 88:
 </callout> </callout>
  
-===== Core content =====+===== 22.1 Core content =====
  
 <WRAP> <WRAP>
 <callout type="info" icon="true"> <callout type="info" icon="true">
-==== Introductory Example ====+==== 22.1.1 Introductory Example ====
  
 In various applications, currents must be measured. In an electric motor, for example, the torque is caused by the current flowing through the motor. A motor control and a simple overcurrent shutdown are based on the knowledge of the current. For further processing, a voltage must be generated from the current. The simplest current-to-voltage converter is the ohmic resistor. A sufficiently large voltage as required by a microcontroller, for example, cannot be achieved with this. So not only does the current have to be converted, but also the generated potential difference has to be amplified. In various applications, currents must be measured. In an electric motor, for example, the torque is caused by the current flowing through the motor. A motor control and a simple overcurrent shutdown are based on the knowledge of the current. For further processing, a voltage must be generated from the current. The simplest current-to-voltage converter is the ohmic resistor. A sufficiently large voltage as required by a microcontroller, for example, cannot be achieved with this. So not only does the current have to be converted, but also the generated potential difference has to be amplified.
Zeile 104: Zeile 105:
 </callout></WRAP> </callout></WRAP>
  
-==== Voltage follower ====+==== 22.1.2 Voltage follower ====
  
  
Zeile 156: Zeile 157:
  </WRAP> ~~PAGEBREAK~~ ~~CLEARFIX~~  </WRAP> ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Non-inverting amplifier ====+==== 22.1.3 Non-inverting amplifier ====
  
 So far, the entire output voltage has been negative-feedback. Now only a part of the voltage is to be fed back. \\ To do this, the output voltage can be reduced using a voltage divider $R_1+R_2$. The circuit for this can be seen in <imgref pic5>. So far, the entire output voltage has been negative-feedback. Now only a part of the voltage is to be fed back. \\ To do this, the output voltage can be reduced using a voltage divider $R_1+R_2$. The circuit for this can be seen in <imgref pic5>.
Zeile 213: Zeile 214:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Inverting Amplifier ====+==== 22.1.4 Inverting Amplifier ====
  
 The circuit of the inverting amplifier can be derived from that of the non-inverting amplifier (see <imgref pic8>). \\  The circuit of the inverting amplifier can be derived from that of the non-inverting amplifier (see <imgref pic8>). \\ 
Zeile 304: Zeile 305:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Inverting Summing Amplifier ====+==== 22.1.5 Inverting Summing Amplifier ====
  
 <WRAP><panel type="default">  <WRAP><panel type="default"> 
Zeile 339: Zeile 340:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Differential Amplifier / Subtractor ====+==== 22.1.6 Differential Amplifier / Subtractor ====
  
 <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjA7CAMB00LAThat6AcNYGYJJwDZCIMkAWQjHSCQkAVgCZHHpGBTAWjDACgAhiCYYsTJuRDkcLcZKxgGIHkrAJ17LoVgNy5BhggSM0Qk0IMlWnXsLkk0GaQxMI0VRuh8A7sNHgwWX8maCwvX2lZCSkZAJYvACc-BUCYll548HU+JOR01JEUzLUEHJAZdgqpBHKQmCzSgHM02vZI8qJ6xOTW8CQWKvYSrwB5FrkpJHoJ9i8AN3ARXpNe9nS8VlnsJD4AJVrennpB8BBCdiUtuAYfHqrC4XJZ26r7-0Hb9qqnyrrwvoGdUCWA+TxwUjA0yejD05WgknYGAA+kwkdAkU8kMi1Gj4OoJOQwE8zAwkWAyXwweBYRI1kY4QjqSi0Ri1KiQrjyeTUUSkThbnk4osijA9gcMspIUKhmcLvUcLAiYp+hYcAYkPhwdc+AtgUKVhK1uANpcurAdlSiZI9a50v16pBmejMciOXByeieRA+TqQCtXoCtiwIDRNmadgsDalYobhCAQ2Aw7NzXwAEbKchYFbicq6UXpzoGnNqhF8AAeUmtGHovGmBikwnYAEkAHYAFw4CS4AB1uy2AGadjgtgDGHG7AGdey2APYtydtgAW46nfYAMgBLFsccsZxMhGuSJixI-sAAmG-7-dgk+nAGUN40WwIADZ8IA noborder}} <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjA7CAMB00LAThat6AcNYGYJJwDZCIMkAWQjHSCQkAVgCZHHpGBTAWjDACgAhiCYYsTJuRDkcLcZKxgGIHkrAJ17LoVgNy5BhggSM0Qk0IMlWnXsLkk0GaQxMI0VRuh8A7sNHgwWX8maCwvX2lZCSkZAJYvACc-BUCYll548HU+JOR01JEUzLUEHJAZdgqpBHKQmCzSgHM02vZI8qJ6xOTW8CQWKvYSrwB5FrkpJHoJ9i8AN3ARXpNe9nS8VlnsJD4AJVrennpB8BBCdiUtuAYfHqrC4XJZ26r7-0Hb9qqnyrrwvoGdUCWA+TxwUjA0yejD05WgknYGAA+kwkdAkU8kMi1Gj4OoJOQwE8zAwkWAyXwweBYRI1kY4QjqSi0Ri1KiQrjyeTUUSkThbnk4osijA9gcMspIUKhmcLvUcLAiYp+hYcAYkPhwdc+AtgUKVhK1uANpcurAdlSiZI9a50v16pBmejMciOXByeieRA+TqQCtXoCtiwIDRNmadgsDalYobhCAQ2Aw7NzXwAEbKchYFbicq6UXpzoGnNqhF8AAeUmtGHovGmBikwnYAEkAHYAFw4CS4AB1uy2AGadjgtgDGHG7AGdey2APYtydtgAW46nfYAMgBLFsccsZxMhGuSJixI-sAAmG-7-dgk+nAGUN40WwIADZ8IA noborder}}
Zeile 390: Zeile 391:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Current-Voltage-Converter ====+==== 22.1.7 Current-Voltage-Converter ====
  
 <WRAP><panel type="default">  <WRAP><panel type="default"> 
Zeile 418: Zeile 419:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Voltage-to-Current Converter ====+==== 22.1.8 Voltage-to-Current Converter ====
  
 <WRAP><panel type="default">  <WRAP><panel type="default"> 
Zeile 444: Zeile 445:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Applications ==== +===== 22.2 Applications ===== 
-=== Programmable Gain Amplifier ===+=== 22.2.1 Programmable Gain Amplifier ===
  
 Often in applications an analog signal is too small to process (e.g. to digitalize it afterward). \\ Often in applications an analog signal is too small to process (e.g. to digitalize it afterward). \\
Zeile 465: Zeile 466:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-===== Common pitfalls =====+===== 22.3 Common pitfalls =====
   * Mixing up open-loop and closed-loop gain:   * Mixing up open-loop and closed-loop gain:
       - open-loop: $U_{\rm O}=A_{\rm D}\,U_{\rm D}$,       - open-loop: $U_{\rm O}=A_{\rm D}\,U_{\rm D}$,
Zeile 483: Zeile 484:
       - finite supply rails limit $U_{\rm O}$ and can break the ideal assumptions.       - finite supply rails limit $U_{\rm O}$ and can break the ideal assumptions.
  
-===== Exercises =====+===== 22.4 Exercises =====
 ==== Worked examples ==== ==== Worked examples ====
  
Zeile 490: Zeile 491:
 {{page>uebung_3.5.4&nofooter}} {{page>uebung_3.5.4&nofooter}}
 {{page>uebung_3.5.5&nofooter}} {{page>uebung_3.5.5&nofooter}}
 +
 +<panel type="info" title="Task 22.1 Voltage follower as impedance converter"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A voltage follower is built with an ideal op-amp. \\  
 +The input is a voltage source $U_{\rm I}=2.0~\rm V$ with internal resistance $R_{\rm S}=10~\rm k\Omega$.   \\
 +The output drives a load resistor $R_{\rm L}$ which is varied between $100~\Omega$ and $100~\rm k\Omega$.
 +
 +  - Determine the input current drawn from the source for $R_{\rm L}=100~\Omega$ and for $R_{\rm L}=100~\rm k\Omega$.
 +  - Explain briefly why the load does not “pull down” the source voltage in this circuit.
 +
 +<button size="xs" type="link" collapse="Loesung_22_1_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_22_1_Tipps" collapsed="true">
 +  * The input voltage source sees (ideally) infinite input resistance.
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_22_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_22_1_Endergebnis" collapsed="true">
 +  * Input current from the source: $I_{\rm S}\approx 0$ for both load values (ideal model).
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 22.2 Non-inverting amplifier design"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A non-inverting amplifier should have a voltage gain of $A_{\rm V}=11$.
 +
 +  - Choose resistor values $R_1$ and $R_2$ in the kOhm-range.
 +  - If $U_{\rm I}=0.25~\rm V$, compute $U_{\rm O}$ (ideal op-amp, no saturation).
 +  - What happens to $U_{\rm O}$ if the op-amp supply rails are $\pm 2.5~\rm V$?
 +
 +<button size="xs" type="link" collapse="Loesung_22_2_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_22_2_Tipps" collapsed="true">
 +  * Rearrange $1+\frac{R_1}{R_2}=11$ to a resistor ratio.
 +  * Check the computed $U_{\rm O}$ against the supply rails (clipping).
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_22_2_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_22_2_Endergebnis" collapsed="true">
 +  * One possible choice: $R_2=10~\rm k\Omega$, $R_1=100~\rm k\Omega$.
 +  * Ideal: $U_{\rm O}=11\cdot 0.25~\rm V=2.75~\rm V$.
 +  * With $\pm 2.5~\rm V$ rails: $U_{\rm O}$ clips near $+2.5~\rm V$ (model-dependent headroom).
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 22.3 Inverting amplifier and virtual ground"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +An inverting amplifier is built with $R_1=2.2~\rm k\Omega$ and $R_2=22~\rm k\Omega$.  
 +The non-inverting input is connected to ground.
 +
 +  - Compute the closed-loop gain $A_{\rm V}$.
 +  - For an input $U_{\rm I}(t)=0.30~\rm V~\sin(2\pi\cdot 1\,{\rm kHz}\cdot t)$, determine $U_{\rm O}(t)$.
 +  - State the potential at the inverting input node (the summing node) in the ideal negative-feedback case.
 +
 +<button size="xs" type="link" collapse="Loesung_22_3_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_22_3_Tipps" collapsed="true">
 +  * Use $A_{\rm V}=-\frac{R_2}{R_1}$ for the inverting amplifier.
 +  * Virtual ground means $U_{\rm m}\approx U_{\rm p}=0~\rm V$ (not a physical short).
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_22_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_22_3_Endergebnis" collapsed="true">
 +  * $A_{\rm V}=-\frac{22~\rm k\Omega}{2.2~\rm k\Omega}=-10$.
 +  * $U_{\rm O}(t)=-3.0~\rm V~\sin(2\pi\cdot 1\,{\rm kHz}\cdot t)$.
 +  * Summing node potential: approximately $0~\rm V$ (virtual ground).
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 22.4 Inverting summing amplifier via superposition"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +An inverting summing amplifier has $R_0=10~\rm k\Omega$, $R_1=10~\rm k\Omega$, and $R_2=20~\rm k\Omega$.  
 +Two inputs are applied: $U_{\rm I1}=+1.0~\rm V$ and $U_{\rm I2}=-0.5~\rm V$.
 +
 +  - Use superposition to compute $U_{\rm O}$.
 +  - Compute the same result by writing the sum directly as a weighted sum.
 +  - Explain briefly why the resistor between the op-amp inputs carries (ideally) no current.
 +
 +<button size="xs" type="link" collapse="Loesung_22_4_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_22_4_Tipps" collapsed="true">
 +  * For each input alone: treat the circuit as an inverting amplifier with gain $-\frac{R_0}{R_i}$.
 +  * Superposition: set the other voltage source to $0$ (replace by a short).
 +  * With feedback: $U_{\rm D}\rightarrow 0$ implies negligible current through a resistor between inputs.
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_22_4_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_22_4_Endergebnis" collapsed="true">
 +  * $U_{\rm O(1)}=-\frac{R_0}{R_1}U_{\rm I1}=-\frac{10}{10}\cdot 1.0~\rm V=-1.0~\rm V$.
 +  * $U_{\rm O(2)}=-\frac{R_0}{R_2}U_{\rm I2}=-\frac{10}{20}\cdot(-0.5~\rm V)=+0.25~\rm V$.
 +  * $U_{\rm O}=U_{\rm O(1)}+U_{\rm O(2)}=-0.75~\rm V$.
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 22.5 Current-to-voltage converter (transimpedance amplifier)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A photodiode is modeled as an ideal current source delivering $I_{\rm I}$ into a transimpedance amplifier.  \\
 +The feedback resistor is $R_1=220~\rm k\Omega$ and the non-inverting input is grounded.
 +
 +  - Determine the transfer resistance $R_{\rm T}=\frac{U_{\rm O}}{I_{\rm I}}$.
 +  - Compute $U_{\rm O}$ for $I_{\rm I}=+2.0~\rm \mu A$.
 +  - What sign does $U_{\rm O}$ have for a positive $I_{\rm I}$ (according to the circuit convention)?
 +
 +<button size="xs" type="link" collapse="Loesung_22_5_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_22_5_Tipps" collapsed="true">
 +  * For the current-to-voltage converter in the given convention: $U_{\rm O}=-R_1 I_{\rm I}$.
 +  * Keep units consistent: $\rm \mu A$ and $\rm k\Omega$.
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_22_5_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_22_5_Endergebnis" collapsed="true">
 +  * $R_{\rm T}=\frac{U_{\rm O}}{I_{\rm I}}=-R_1=-220~\rm k\Omega$.
 +  * $U_{\rm O}=-(220~\rm k\Omega)\cdot (2.0~\rm \mu A)=-0.44~\rm V$.
 +  * For $I_{\rm I}>0$: $U_{\rm O}<0$ (with this sign convention).
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 22.6 Voltage-to-current converter (transconductance)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A voltage-to-current converter should generate an output current proportional to an input voltage, with transfer conductance
 +\[
 +S=2.0~\rm mA/V.
 +\]
 +Assume the circuit uses a single resistor $R$ to set the current (ideal op-amp behavior), such that approximately $I_{\rm O}\approx \frac{U_{\rm I}}{R}$.
 +
 +  - Determine $R$ for the desired $S$.
 +  - Compute $I_{\rm O}$ for $U_{\rm I}=0.6~\rm V$.
 +  - Briefly name one application of such a circuit.
 +
 +<button size="xs" type="link" collapse="Loesung_22_6_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_22_6_Tipps" collapsed="true">
 +  * If $I_{\rm O}\approx \frac{U_{\rm I}}{R}$, then $S\approx \frac{1}{R}$.
 +  * Convert $2.0~\rm mA/V$ into $\rm A/V$ before inverting.
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_22_6_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_22_6_Endergebnis" collapsed="true">
 +  * $S=2.0~\rm mA/V=2.0\times 10^{-3}~\rm A/V \Rightarrow R=\frac{1}{S}=500~\Omega$.
 +  * $I_{\rm O}=S\,U_{\rm I}=(2.0~\rm mA/V)\cdot 0.6~\rm V=1.2~\rm mA$.
 +  * Example application: voltage-controlled current source (e.g. driving an actuator/LED current or biasing a sensor).
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
  
 ===== Embedded resources ===== ===== Embedded resources =====