Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block22 [2026/01/10 10:00] mexleadminelectrical_engineering_and_electronics_1:block22 [2026/01/10 10:01] (aktuell) mexleadmin
Zeile 1: Zeile 1:
 ====== Block 22 — Negative-feedback Op-Amp Circuits ====== ====== Block 22 — Negative-feedback Op-Amp Circuits ======
  
-===== 22.0.1 Learning objectives =====+===== 22.0 Intro ===== 
 + 
 +==== 22.0.1 Learning objectives ====
 <callout> <callout>
 After this 90-minute block, you can After this 90-minute block, you can
Zeile 18: Zeile 20:
 </callout> </callout>
  
-===== 22.0.2 Preparation at Home =====+==== 22.0.2 Preparation at Home ====
  
 Well, again  Well, again 
Zeile 27: Zeile 29:
   * ...   * ...
  
-===== 22.0.3 90-minute plan =====+==== 22.0.3 90-minute plan ====
   - Warm-up (10 min):   - Warm-up (10 min):
     - Quick recall: ideal op-amp model and “golden rules” in negative feedback: \\ $I_{\rm p}\approx 0$, $I_{\rm m}\approx 0$, and (with feedback) $U_{\rm D}=U_{\rm p}-U_{\rm m}\rightarrow 0$.     - Quick recall: ideal op-amp model and “golden rules” in negative feedback: \\ $I_{\rm p}\approx 0$, $I_{\rm m}\approx 0$, and (with feedback) $U_{\rm D}=U_{\rm p}-U_{\rm m}\rightarrow 0$.
Zeile 68: Zeile 70:
     - Outlook: differential amplifier as subtraction / common-mode rejection; application circuits (PGA, instrumentation concepts).     - Outlook: differential amplifier as subtraction / common-mode rejection; application circuits (PGA, instrumentation concepts).
  
- +==== 22.0.4  Conceptual overview ====
-===== 22.0.4  Conceptual overview =====+
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   * Negative feedback turns a very large (and imperfect) op-amp gain $A_{\rm D}$ into predictable closed-loop behavior: the circuit “chooses” $U_{\rm O}$ so that the differential input voltage $U_{\rm D}=U_{\rm p}-U_{\rm m}$ becomes (almost) zero.   * Negative feedback turns a very large (and imperfect) op-amp gain $A_{\rm D}$ into predictable closed-loop behavior: the circuit “chooses” $U_{\rm O}$ so that the differential input voltage $U_{\rm D}=U_{\rm p}-U_{\rm m}$ becomes (almost) zero.