Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:start [2025/09/27 13:53] mexleadminelectrical_engineering_and_electronics_1:start [2026/01/19 10:40] (aktuell) – [Electrical Engineering and Electronics 1 (EEE1)] mexleadmin
Zeile 1: Zeile 1:
 ====== Electrical Engineering and Electronics 1 (EEE1) ====== ====== Electrical Engineering and Electronics 1 (EEE1) ======
  
-You already know V-I-R and you not only connect AC/DC with music?  \\ Great! Then you should Go one step further.  +You already know V-I-R and you not only connect AC/DC with music?  \\ Great! Then you should go one step further.  
  
 This course introduces the fundamental principles of electrical engineering and electronics. \\  This course introduces the fundamental principles of electrical engineering and electronics. \\ 
 It spans from basic electrical quantities to DC networks, electrostatics, magnetostatics, and a first introduction to operational amplifiers. \\  It spans from basic electrical quantities to DC networks, electrostatics, magnetostatics, and a first introduction to operational amplifiers. \\ 
 The course combines theory, worked examples, and practical exercises with simulations and real-world devices. The course combines theory, worked examples, and practical exercises with simulations and real-world devices.
- 
-===== Learning outcomes ===== 
-<callout> 
-After completing this course, students will be able to: 
-  - Apply SI units, prefixes, and electrical terminology consistently. 
-  - Explain and calculate fundamental electrical quantities such as charge, current, voltage, resistance, power, and energy. 
-  - Analyze DC circuits using Kirchhoff’s laws, source equivalents, and two-port theory. 
-  - Describe electric and magnetic fields, calculate key field distributions, and apply them to capacitors, inductors, and energy storage. 
-  - Design and analyze simple operational amplifier circuits with feedback and comparator functions. 
-</callout> 
- 
-===== Prerequisites ===== 
-  - Basic physics (mechanics, Newton’s laws, Coulomb’s law). 
-  - Basic calculus (differentiation and integration). 
-  - Familiarity with algebraic manipulation. 
- 
-===== Grading and assessment ===== 
-Assessment is done only by the final written exam. 
- 
-===== Notation & units ===== 
-The course consistently uses the following symbols, units, and typical values: 
- 
-<tabcaption notation | Course-wide notation and units> 
-^ Symbol ^ Quantity                          ^ SI unit   ^ name of the unit  ^ Typical values  ^ 
-| $q$       | Electric charge                | $\rm C$   | Coulomb           | $10^{-19} ~\rm C$ (electron) to $\rm mC$              | 
-| $I$       | Electric current               | $\rm A$   | Ampere            | $\rm \mu A$ (sensors) to $\rm kA$ (lightning)         | 
-| $U$       | Voltage (potential difference)  | $\rm V$  | Volt              | $\rm \mu V$ (noise) to $\rm MV$ (transmission lines)  | 
-| $\varphi$  | Electric potential            | $\rm V$   | Volt              | — | 
-| $P$       | Power                          | $\rm W$   | Watt              | $\rm mW$ (electronics) to $\rm MW$ (machines)         | 
-| $W$       | Energy                         | $\rm J$   | Joule             | $\rm µJ$ (capacitors) to $\rm MJ$ (batteries)         | 
-| $R$       | Resistance                     | $\rm \Omega$  | Ohm           | $\rm mΩ$ to $\rm MΩ$                                  | 
-| $G$       | Conductance                    | $\rm S$   | Siemens           | $\rm µS$ to $\rm S$                                   | 
-| $\rho$    | Resistivity                    | $\rm \Omega \cdot m$      | — | $1.7 \cdot 10^{-8} ~\rm \Omega m$ (Cu)                | 
-| $\sigma$  | Conductivity                   | $\rm S/m$                 | — | $5.8 \cdot 10^{7} ~\rm S/m$ (Cu)                      | 
-| $C$       | Capacitance                    | $\rm F$    | Farad            | $\rm pF$ (ceramic) to $\rm F$ (supercaps)             | 
-| $L$       | Inductance                     | $\rm H$    | Henry            | $\rm \mu H$ to $\rm H$                                | 
-| $E$       | Electric field strength        | $\rm V/m$                 | — | $\rm 1 ~\rm V/m$ to $\rm MV/m$ (breakdown)            | 
-| $D$       | Electric flux density          | $\rm C/m²$                | — | — | 
-| $B$       | Magnetic flux density          | $\rm T$    | Tesla            | $\rm \mu T$ (Earth) to several $\rm T$ (MRI)          | 
-| $H$       | Magnetic field strength        | $\rm A/m$                 | — | — | 
-| $\Phi$    | Magnetic flux                  | $\rm Wb$   | Weber            | $\rm \mu Wb$ to $\rm mWb$                             | 
-| $\theta$  | magnetic voltage (Magnetomotive force)                     | $\rm A \cdot turn$  | — | — | 
-| $R$       | Reluctance                      | $\rm A/Wb$               | — | — | 
-</tabcaption> 
  
 ===== Block plan ===== ===== Block plan =====
-Below is the 24-block plan (90 minutes each): 
  
 <callout> <callout>
-[[:electrical_engineering_1:introduction_in_ee1|Introduction in Electrical Engineering 1]] +[[introduction_in_eee1|Introduction in Electrical Engineering 1]] 
 </callout> </callout>
- 
 <WRAP group > <WRAP group >
 <WRAP column third> <WRAP column third>
 <callout> <callout>
 **Chapter 1 — Electrical Fundamentals** or: Watt is Power and Current? **Chapter 1 — Electrical Fundamentals** or: Watt is Power and Current?
-  * [[block01|Block 01 — Physical quantities and units]]  +  * [[block01|Block 01 — Physical Quantities and Units]]  
-  * [[block02|Block 02 — Electric charge and current]]  +  * [[block02|Block 02 — Electric Charge, Current and Voltage]]  
-  * [[block03|Block 03 — Voltage, power, resistance]]+  * [[block03|Block 03 — Resistance and Power]]
 </callout> </callout>
  
 <callout> <callout>
 **Chapter 2 — DC Networks** or: something lumpy with two Pins and why shortcircuits may be important **Chapter 2 — DC Networks** or: something lumpy with two Pins and why shortcircuits may be important
-  * [[block04|Block 04 — Kirchhoff’s laws]] +  * [[block04|Block 04 — Kirchhoff’s Laws]] 
-  * [[block05|Block 05 — Resistive networks]] +  * [[block05|Block 05 — Resistive Networks]] 
-  * [[block06|Block 06 — Real sources and source equivalents]] +  * [[block06|Block 06 — Real Sources and Source Equivalents]] 
-  * [[block07|Block 07 — Power-relevant figures]] +  * [[block07|Block 07 — Power-relevant Figures]] 
-  * [[block08|Block 08 — Two-port theory and transforms]]+  * [[block08|Block 08 — Two-terminal Theory and Transforms]]
 </callout> </callout>
 </WRAP> </WRAP>
Zeile 80: Zeile 34:
 <callout> <callout>
 **Chapter 3 — Electric Fields** or: positivity might be repulsive **Chapter 3 — Electric Fields** or: positivity might be repulsive
-  * [[block09|Block 09 — Force on charges and electric field strength]] +  * [[block09|Block 09 — Force on Charges and electric Field Strength]] 
-  * [[block10|Block 10 — Field patterns of key geometries]] +  * [[block10|Block 10 — Field Patterns of key Geometries]] 
-  * [[block11|Block 11 — Influence and displacement field]] +  * [[block11|Block 11 — Influence and Displacement Field]] 
-  * [[block12|Block 12 — Capacitors and capacitance]] +  * [[block12|Block 12 — Capacitors and Capacitance]] 
-  * [[block13|Block 13 — Capacitor circuits and energy]] +  * [[block13|Block 13 — Capacitor Circuits and Energy]] 
-  * [[block14|Block 14 — Steady conduction field]]+  * [[block14|Block 14 — Steady Conduction Field]]
 </callout> </callout>
 <callout> <callout>
 **Chapter 4 — Magnetic Fields** or: Why ist the north pole on the south pole? **Chapter 4 — Magnetic Fields** or: Why ist the north pole on the south pole?
-  * [[block15|Block 15 — Magnets and their effects]] +  * [[block15|Block 15 — Magnetstheir Effects and Fieldline Images]] 
-  * [[block16|Block 16 — Fields of current-carrying conductors]] +  * [[block16|Block 16 — Ampère’s law and MMF]] 
-  * [[block17|Block 17 — Ampère’s law and MMF]] +  * [[block17|Block 17 — Magnetic Flux Density and Forces]] 
-  * [[block18|Block 18 — Magnetic flux density and forces]] +  * [[block18|Block 18 — Magnetic Flux and Induction]] 
-  * [[block19|Block 19 — Magnetic circuits and inductance]] +  * [[block19|Block 19 — Magnetic Circuits]] 
-  * [[block20|Block 20 — Electromagnetic induction and energy]]+  * [[block20|Block 20 — Inductivity and Energy]]
 </callout> </callout>
 </WRAP> </WRAP>
 <WRAP column third> <WRAP column third>
- 
 <callout> <callout>
 **Chapter 5 — Operational Amplifiers** - golden rules and infinite gain **Chapter 5 — Operational Amplifiers** - golden rules and infinite gain
-  * [[block21|Block 21 — Op-amp basics]] +  * [[block21|Block 21 — Op-Amp Basics]] 
-  * [[block22|Block 22 — Negative-feedback op-amp circuits]] +  * [[block22|Block 22 — Negative-feedback Op-Amp Circuits]] 
-  * [[block23|Block 23 — Comparator circuits]] +  * [[block23|Block 23 — Comparator Circuits]] 
-  * [[block24|Block 24 — Wrap-up and applications]]+  * [[block24|Block 24 — Wrap-up and Applications]]
 </callout> </callout>
 </WRAP> </WRAP>
Zeile 110: Zeile 63:
  
 <callout> <callout>
-[[old English exams]]+[[old English exams|Preparation for the Exam]]
 </callout> </callout>
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 +
 +===== Learning outcomes =====
 +<callout>
 +After completing this course, students will be able to:
 +  - Apply SI units, prefixes, and electrical terminology consistently.
 +  - Explain and calculate fundamental electrical quantities such as charge, current, voltage, resistance, power, and energy.
 +  - Analyze DC circuits using Kirchhoff’s laws, source equivalents, and two-port theory.
 +  - Describe electric and magnetic fields, calculate key field distributions, and apply them to capacitors, inductors, and energy storage.
 +  - Design and analyze simple operational amplifier circuits with feedback and comparator functions.
 +</callout>
 +
 +===== Prerequisites =====
 +  - Basic physics (mechanics, Newton’s laws, Coulomb’s law).
 +  - Basic calculus (differentiation and integration).
 +  - Familiarity with algebraic manipulation.
 +
 +===== Grading and assessment =====
 +Assessment is done only by the final written exam.
  
 ====== Additional Links ====== ====== Additional Links ======
Zeile 124: Zeile 95:
   * A great introductary script into electrical engineering can be found at [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_II_-_Thermodynamics%2C_Electricity%2C_and_Magnetism_(OpenStax)|LibreText - Physics II Thermodynamics, Electricity and Magnetism]]. The content ist originally from [[https://cnx.org/contents/eg-XcBxE@16.7:Ai7EWAra@5/Introduction|OpenStax]] and covers most of the parts of my course   * A great introductary script into electrical engineering can be found at [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_II_-_Thermodynamics%2C_Electricity%2C_and_Magnetism_(OpenStax)|LibreText - Physics II Thermodynamics, Electricity and Magnetism]]. The content ist originally from [[https://cnx.org/contents/eg-XcBxE@16.7:Ai7EWAra@5/Introduction|OpenStax]] and covers most of the parts of my course
   * Another good introduction ist given by [[http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html|HyperPhysics]]   * Another good introduction ist given by [[http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html|HyperPhysics]]
 +  * Alternatively, Tony R. Kuphaldt developed a very detailed and easy booklet on EEE1 and EEE2: [[https://www.ibiblio.org/kuphaldt/electricCircuits/|online version]] \\ {{electrical_engineering_and_electronics_1:dc.pdf|PDF for EEE1}},{{electrical_engineering_and_electronics_1:ac.pdf|PDF for EEE2}}, {{electrical_engineering_and_electronics_1:semi.pdf|PDF for semiconductor part}}
 </WRAP> </WRAP>